martinha
1、侯宏/文炙手可热的生成式AI或大模型,将如何影响商业史走向。一个可能的思考角度是大模型的入局将影响整个数字化生产力的分工结构。据此,本文提出大数据时代向大智能时代嬗变的论断,包括以下三方面命题首先。
2、大模型的本质是智能的大规模集中供给,是智能的基础设施化;其次,这一趋势推动数据与智能的解耦,使得没有大数据的企业也可接入高质量智能;
。3、最后,由此带来的智能红利对中小企业尤为有利,或成为经济结构性增长的重要来源。以上挑战了大数据时代的思维范式,为相关人士理解数字化变局提供了一个有趣的思考起点。生成式AI在诸多方面不同于传统AI。
4、一方面,顾名思义,生成式AI擅长生成新内容,而传统AI局限于解释现有数据或者做出预测。投资机构a16z的MartinCasado认为“微芯片将计算的边际成本降到了零,互联网将分发的边际成本降到了零。
5、大模型则将创作的边际成本降到零。”另一方面,基于自然语言的人机交互界面,生成式AI具备了技术民主化的特质。
martinhal
1、正如麦肯锡的LareinaLee所说“用户不需要任何数据科学或机器学习专业知识,就能有效地利用生成式AI完成工作。这就好比大型机只有技术专家才会使用,而个人电脑人人皆可掌握。然而,本文强调生成式AI灵活应对多种非预设任务的能力。
2、区别于需根据预设任务进行专门设计的传统AI。要理解这一点,不妨考虑传统AI公司面临的商业模式困境。以AI四小龙为代表的“传统”AI公司尽管技术投入巨大。
3、但难以摆脱为企业客户提供定制服务的低扩展性模式。这是因为,要实现AI算法与特定任务情景的匹配,技术供应方不得不提供大量低自动化程度的工程服务。
4、既拉低利润率又降低可扩展性。相比之下,体验过的人士不难认同,大模型好似百科全书。
5、几乎所有领域都应对自如。尽管在专业领域需要模型“微调”,但正如“微调”二字所暗示的,其定制化程度远低于传统AI项目。